
gau2grid Documentation
Release v2.0.6+4.gcd0e8d0.dirty

Daniel G. A. Smith

Jan 11, 2021

GETTING STARTED

1 Index 3

Index 17

i

ii

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

gau2grid is a python-generated C library for vectorized computation of grid to gaussian collocation matrices

The core of gau2grid is generating the collocation matrices between a real space grid and a gaussian basis set expanded
to a given angular momenta. Where a simple gaussian can be represented with the cartesian form as:

𝜑(r) = 𝑥𝑙𝑦𝑚𝑧𝑛𝑒−𝛼𝑟2

where for a given angular momenta ℓ, a gaussian basis has all possible combinations of 𝑙,𝑚, 𝑛 that satisfy 𝑙+𝑚+𝑛 = ℓ.
These gaussians can also take a spherical harmonic form of:

𝜑(r) = 𝑌 𝑚
ℓ (r̂)𝑒−𝛼𝑟2

where 𝑚 ranges from +ℓ to −ℓ. The spherical form offers a more compact representation at higher angular momenta,
but is more difficult to work with when examining cartesian derivates.

In quantum chemistry, an individual basis is often represented as a sum of several gaussian with different exponents
and coefficients together:

𝜑(r) = 𝑌 𝑚
ℓ (r̂)

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖𝑟

2

Collocation matrices between a single basis set and multiple grid points can then be represented as follows:

𝜑𝑚𝑝 = 𝑌 𝑚
ℓ (̂r𝑝 − rcenter)

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖(rcenter−r𝑝)

2

where the basis is evaluated at every point 𝑝 for every component of the basis i.e. basis function 𝑚. The 𝜑𝑚𝑝 matrices
are the primary focus on the gau2grid library.

GETTING STARTED 1

https://en.wikipedia.org/wiki/Spherical_harmonics

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

2 GETTING STARTED

CHAPTER

ONE

INDEX

Getting Started

• Python installation

• C installation

• Gaussian Component Orders

1.1 Python installation

You can install gau2grid with conda or by installing from source.

1.1.1 Conda

You can update gau2grid using conda:

conda install pygau2grid -c psi4

This installs gau2grid and the NumPy dependancy.

1.1.2 Install from Source

To install gau2grid from source, clone the repository from github:

git clone https://github.com/dgasmith/gau2grid.git
cd gau2grid
python setup.py install

1.1.3 Test

Test gau2grid with py.test:

cd gau2grid
py.test

3

https://www.anaconda.com/download/
https://github.com/dgasmith/gau2grid

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

1.2 C installation

You can install gau2grid with conda or by installing from source.

1.2.1 Conda

You can update gau2grid using conda:

conda install gau2grid -c psi4

This installs the gau2grid library.

1.2.2 Install from Source

Gau2grid uses the CMake build system to compile and configure options. To begin, clone the repository:

git clone https://github.com/dgasmith/gau2grid.git
cd gau2grid

A basic CMake build can then be executed with:

cmake -H. -Bobjdir
cd objdir
make
make install

1.2.3 CMake Options

Gau2grid can be compiled with the following CMake options:

• CMAKE_INSTALL_PREFIX - The path to install the library to (default, /usr/local)

• CMAKE_INSTALL_LIBDIR - Directory to which libraries installed

• MAX_AM - The maximum gaussian angular momentum to compile (default, 8)

• CMAKE_BUILD_TYPE - Build type (Release or Debug) (default, Release)

• ENABLE_XHOST - Enables processor-specific optimization (default, ON)

• BUILD_FPIC - Libraries will be compiled with position independent code (default, ON)

• BUILD_SHARED_LIBS - Build final library as shared, not static (default, ON)

• ENABLE_GENERIC - Enables mostly static linking of system libraries for shared library (default, OFF)

CMake options should be prefixed with -D, for example:

cmake -H. -Bobjdir -DCMAKE_INSTALL_PREFIX=~/installs

4 Chapter 1. Index

https://www.anaconda.com/download/

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

1.3 Gaussian Component Orders

The order of the individual components can vary between use cases. gau2grid can produce any resulting order that
a user requires. The C version of the code must be compiled to a given order. The currently supported orders are as
follows.

1.3.1 Cartesian Order

gau2grid currently supports both the cca and molden orders. The number of components per angular momentum
can be computed as:

𝑁cartesian = (ℓ+ 1)(ℓ+ 2)/2

Row Order

The cca order iterates over the upper triangular hyper diagonal and has the following pattern:

• S (ℓ = 0): 1

• P (ℓ = 1): X, Y, Z

• D (ℓ = 2): XX, XY, XZ, YY, YZ, ZZ

• F (ℓ = 3): XXX, XXY, XXZ, XYY, XYZ, XZZ, YYY, YYZ, YZZ, ZZZ

Molden Order

The molden order is primarily found in a Molden format and only has a determined values for 0 ≤ ℓ < 4.

• S (ℓ = 0): 1

• P (ℓ = 1): X, Y, Z

• D (ℓ = 2): XX, YY, ZZ, XY, XZ, YZ

• F (ℓ = 3): XXX, YYY, ZZZ, XYY, XXY, XXZ, XZZ, YZZ, YYZ, XYZ

1.3.2 Spherical Order

gau2grid currently supports both the CCA and gaussian orders. The numnber of components per angular momentum
can be computed as:

𝑁spherical = 2ℓ+ 1

CCA Order

An industry standard order known as the Common Component Architecture:

• S (ℓ = 0): 𝑌 0
0

• P (ℓ = 1): 𝑌 −1
1 , 𝑌 0

1 , 𝑌 +1
1 ,

• D (ℓ = 2): 𝑌 −2
2 , 𝑌 −1

2 , 𝑌 0
2 , 𝑌 +1

2 , 𝑌 +2
2

1.3. Gaussian Component Orders 5

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

Gaussian Order

The gaussian order as used by the Gaussian program:

• S (ℓ = 0): 𝑌 0
0

• P (ℓ = 1): 𝑌 0
1 , 𝑌 +1

1 , 𝑌 −1
1 ,

• D (ℓ = 2): 𝑌 0
2 , 𝑌 +1

2 , 𝑌 −1
2 , 𝑌 +2

2 , 𝑌 −2
2

Python Interface

• Collocation Example

• API Reference

1.4 API Reference

gau2grid.collocation(xyz, L, coeffs, exponents, center, grad=0, spherical=True, out=None, carte-
sian_order='cca', spherical_order='cca')

Computes the collocation matrix for a given gaussian basis of the form:

𝜑𝑚𝑝 = 𝑌 𝑚
ℓ

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖|𝜑center−𝑝|2

Where for a given angular momentum ℓ, components 𝑚 range from +ℓ to −ℓ for each grid point 𝑝.

This function uses a optimized C library as a backend.

Parameters

• xyz (array_like) – The (3, N) cartesian points to compute the grid on

• L (int) – The angular momentum of the gaussian

• coeffs (array_like) – The coefficients of the gaussian

• exponents (array_like) – The exponents of the gaussian

• center (array_like) – The cartesian center of the gaussian

• grad (int, optional (default: 0)) – Can return cartesian gradient and Hes-
sian per point if requested.

• spherical (bool, optional (default: True)) – Transform the resulting
cartesian gaussian to spherical

• out (dict, optional) – A dictionary of output NumPy arrays to write the data to.

Returns Returns a dictionary containing the requested arrays (PHI, PHI_X, PHI_XX, etc). Where
each matrix is of shape (ngaussian_basis x npoints)

Return type dict of array_like

gau2grid.collocation_basis(xyz, basis, grad=0, spherical=True, out=None, cartesian_order='cca',
spherical_order='cca')

Computes the collocation matrix for a given gaussian basis of the form:

𝜑𝑚𝑝 = 𝑌 𝑚
ℓ

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖|𝜑center−𝑝|2

Where for a given angular momentum ℓ, components 𝑚 range from +ℓ to −ℓ for each grid point 𝑝.

This function uses a optimized C library as a backend.

6 Chapter 1. Index

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

xyz [array_like] The (3, N) cartesian points to compute the grid on

basis [list of dicts] Each dict should contain the following keys (L, coeffs, exponents, center).

L [int] The angular momentum of the gaussian

coeffs [array_like] The coefficients of the gaussian

exponents [array_like] The exponents of the gaussian

center [array_like] The cartesian center of the gaussian

grad [int, default=0] Can return cartesian gradient and Hessian per point if requested.

spherical [bool, default=True] Transform the resulting cartesian gaussian to spherical

out [dict, optional] A dictionary of output NumPy arrays to write the data to.

Returns Returns a dictionary containing the requested arrays (PHI, PHI_X, PHI_XX, etc). Where
each matrix is of shape (ngaussian_basis x npoints)

Return type dict of array_like

gau2grid.orbital(orbs, xyz, L, coeffs, exponents, center, spherical=True, out=None, carte-
sian_order='cca', spherical_order='cca')

Computes a array of a given orbital on a grid for a given gaussian basis of the form:

𝜑𝑚𝑝 = 𝑌 𝑚
ℓ

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖|𝜑center−𝑝|2

Where for a given angular momentum ℓ, components 𝑚 range from +ℓ to −ℓ for each grid point 𝑝.

This function uses a optimized C library as a backend.

Parameters

• orbitals (array_like) – The (norb, nval) section of orbitals.

• xyz (array_like) – The (3, N) cartesian points to compute the grid on

• L (int) – The angular momentum of the gaussian

• coeffs (array_like) – The coefficients of the gaussian

• exponents (array_like) – The exponents of the gaussian

• center (array_like) – The cartesian center of the gaussian

• spherical (bool, optional (default: True)) – Transform the resulting
cartesian gaussian to spherical

• out (dict, optional) – A dictionary of output NumPy arrays to write the data to.

Returns Returns a (norb, N) array of the orbitals on a grid.

Return type array_like

gau2grid.orbital_basis(orbs, xyz, basis, spherical=True, out=None, cartesian_order='cca', spheri-
cal_order='cca')

Computes a array of a given orbital on a grid for a given gaussian basis of the form:

𝜑𝑚𝑝 = 𝑌 𝑚
ℓ

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖|𝜑center−𝑝|2

Where for a given angular momentum ℓ, components 𝑚 range from +ℓ to −ℓ for each grid point 𝑝.

orbital [array_line] A (norb, nao) orbital array aligned to the orbitals basis

1.4. API Reference 7

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

xyz [array_like] The (3, N) cartesian points to compute the grid on

basis [list of dicts] Each dict should contain the following keys (L, coeffs, exponents, center).

L [int] The angular momentum of the gaussian

coeffs [array_like] The coefficients of the gaussian

exponents [array_like] The exponents of the gaussian

center [array_like] The cartesian center of the gaussian

spherical [bool, default=True] Transform the resulting cartesian gaussian to spherical

out [dict, optional] A dictionary of output NumPy arrays to write the data to.

Returns Returns a (norb, N) array of the orbitals on a grid.

Return type array_like

1.5 Collocation Example

1.5.1 Single Collocation

A collocation grid between a single basis and a Cartesian grid can be computed with the collocation() function.
For example, we will use a grid starting at the origin along the z axis:

>>> import gau2grid
>>> import numpy as np
>>> xyz = np.zeros((3, 5))
>>> xyz[2] = np.arange(5)

We can then create a gaussian with only a single coefficient and exponent of 1 centered on the origin:

>>> L = 0
>>> coef = [1]
>>> exp = [1]
>>> center = [0, 0, 0]

The collocation grid can then be computed as:

>>> ret = gau2grid.collocation(xyz, L, coef, exp, center)
>>> ret["PHI"]
[[1.00000e+00 3.67879e-01 1.83156e-02 1.23409e-04 1.12535e-07]]

The p gaussian can be also be computed. Note that since our grid points are along the z axis, the x and y components
are orthogonal and thus zero.

>>> L = 1
>>> ret = gau2grid.collocation(xyz, L, coef, exp, center, spherical=False, grad=1)
>>> ret["PHI"]
[[0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00] # P_x
[0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00] # P_y
[0.00000e+00 3.67879e-01 3.66312e-02 3.70229e-04 4.50140e-07]] # P_z

As the previous execution used grad=1, the X, Y, and Z cartesian gradients are also available and can be accessed as:

8 Chapter 1. Index

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

>>> ret["PHI_Z"]
[[0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00]
[0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00]
[1.00000e+00 -3.67879e-01 -1.28209e-01 -2.09797e-03 -3.48859e-06]]

1.5.2 Basis Collocation

Often it is beneficial to compute the collocation matrix between several basis functions and a set of grid points at
once the collocation_basis() helper function provides this functionality. To begin, a set of basis sets can be
constructed with the following form:

>>> basis = [{
'center': [0., 0., 0.],
'exp': [38, 6, 1],
'coef': [0.4, 0.6, 0.7],
'am': 0

}, {
'center': [0., 0., 0.],
'exp': [0.3],
'coef': [0.3],
'am': 1

}]

Execution of this basis results in a collocation matrix where basis results are vertically stacked on top of each other:

>>> ret = gau2grid.collocation_basis(xyz, basis, spherical=False)
>>> ret["PHI"]
[[1.70000e+00 2.59003e-01 1.28209e-02 8.63869e-05 7.87746e-08] # S
[0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00] # P_x
[0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00] # P_y
[0.00000e+00 2.22245e-01 1.80717e-01 6.04850e-02 9.87570e-03]] # P_z

C Interface

• Collocation Example

• API Reference

1.6 API Reference

1.6.1 Helper Functions

A collection of function ment to provide information and the gau2grid library.

int gg_max_L();
Returns the maximum compiled angular momentum

int gg_ncomponents(const int L, const int spherical)
Returns the number of components for a given angular momentum.

Parameters

• L – The angular momentum of the basis function.

• spherical – Boolean that returns spherical (1) or cartesian (0) basis representations.

1.6. API Reference 9

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

The following enums are also specified:

• GG_SPHERICAL_CCA - CCA spherical output.

• GG_SPHERICAL_GAUSSIAN - Gaussian spherical output.

• GG_CARTESIAN_CCA - CCA cartesian output.

• GG_CARTESIAN_MOLDEN - Molden cartesian output.

1.6.2 Transpose Functions

Transposes matrices if input or output order is incorrect.

void gg_naive_transpose(unsigned long n, unsigned long m, const double* PRAGMA_RESTRICT input, double* PRAGMA_RESTRICT output)
Transposes a matrix using a simple for loop.

Parameters

• n – The number of rows in the input matrix.

• m – The number of rows in the output matrix.

• input – The (n x m) input matrix.

• output – The (m x n) output matrix.

void gg_fast_transpose(unsigned long n, unsigned long m, const double* PRAGMA_RESTRICT input, double* PRAGMA_RESTRICT output)
Transposes a matrix using a small on-cache temporary array. Is usually faster than
gg_naive_transpose().

Parameters

• n – The number of rows in the input matrix.

• m – The number of rows in the output matrix.

• input – The (n x m) input matrix.

• output – The (m x n) output matrix.

1.6.3 Orbital Functions

Computes orbitals on a grid.

void gg_orbitals(int L, const double* PRAGMA_RESTRICT C, const unsigned long norbitals, const unsigned long npoints, const double* PRAGMA_RESTRICT xyz, const unsigned long xyz_stride, const int nprim, const double* PRAGMA_RESTRICT coeffs, const double* PRAGMA_RESTRICT exponents, const double* PRAGMA_RESTRICT center, const int order, double* PRAGMA_RESTRICT orbital_out)
Computes orbital a section on a grid. This function performs the following contraction inplace.

𝐶𝑖𝑚𝜑𝑚𝑝 → 𝑟𝑒𝑡𝑖𝑝

This is often more efficient than generating 𝜑𝑚𝑝 and then contracting with the orbitals C as there is greater cache
locality.

Parameters

• L – The angular momentum of the basis function.

• C – A (norbitals, ncomponents) matrix of orbital coefficients.

• norbitals – The number of orbs to compute.

• npoints – The number of grid points to compute.

• xyz – A (npoints, 3) or (npoints, n) array of the xyz coordinates.

10 Chapter 1. Index

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

• xyz_stride – The stride of the xyz input array. 1 for xx..., yy..., zz... style
input, 3 for xyz, xyz, xyz, ... style input.

• nprim – The number of primitives (exponents and coefficients) in the basis set

• coeffs – A (nprim,) array of coefficients (𝑐).

• exponents – A (nprim,) array of exponents (𝛼).

• center – A (3,) array of x, y, z coordinate of the basis center.

• order – Enum that specifies the output order.

• orbital_out – (norbitals, npoints) array of orbitals on the grid.

1.6.4 Collocation Functions

Creates collocation matrices between a gaussian function and a set of grid points.

void gg_collocation(int L, const unsigned long npoints, const double* PRAGMA_RESTRICT xyz, const unsigned long xyz_stride, const int nprim, const double* PRAGMA_RESTRICT coeffs, const double* PRAGMA_RESTRICT exponents, const double* PRAGMA_RESTRICT center, const int order, double* PRAGMA_RESTRICT phi_out)
Computes the collocation array:

𝜑𝑚𝑝 = 𝑌 𝑚
ℓ

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖|𝜑center−𝑝|2

Parameters

• L – The angular momentum of the basis function.

• npoints – The number of grid points to compute.

• xyz – A (npoints, 3) or (npoints, n) array of the xyz coordinates.

• xyz_stride – The stride of the xyz input array. 1 for xx..., yy..., zz... style
input, 3 for xyz, xyz, xyz, ... style input.

• nprim – The number of primitives (exponents and coefficients) in the basis set

• coeffs – A (nprim,) array of coefficients (𝑐).

• exponents – A (nprim,) array of exponents (𝛼).

• center – A (3,) array of x, y, z coordinate of the basis center.

• order – Enum that specifies the output order.

• phi_out – (ncomponents, npoints) collocation array.

void gg_collocation_deriv1(int L, const unsigned long npoints, const double* PRAGMA_RESTRICT xyz, const unsigned long xyz_stride, const int nprim, const double* PRAGMA_RESTRICT coeffs, const double* PRAGMA_RESTRICT exponents, const double* PRAGMA_RESTRICT center, const int order, double* PRAGMA_RESTRICT phi_out, double* PRAGMA_RESTRICT phi_out, double* PRAGMA_RESTRICT phi_x_out, double* PRAGMA_RESTRICT phi_y_out, double* PRAGMA_RESTRICT phi_z_out)
Computes the collocation array and the corresponding first cartesian derivatives:

𝜑𝑚𝑝 = 𝑌 𝑚
ℓ

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖|𝜑center−𝑝|2

Parameters

• L – The angular momentum of the basis function.

• npoints – The number of grid points to compute.

• xyz – A (npoints, 3) or (npoints, n) array of the xyz coordinates.

• xyz_stride – The stride of the xyz input array. 1 for xx..., yy..., zz... style
input, 3 for xyz, xyz, xyz, ... style input.

• nprim – The number of primitives (exponents and coefficients) in the basis set

1.6. API Reference 11

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

• coeffs – A (nprim,) array of coefficients (𝑐).

• exponents – A (nprim,) array of exponents (𝛼).

• center – A (3,) array of x, y, z coordinate of the basis center.

• order – Enum that specifies the output order.

• phi_out – (ncomponents, npoints) collocation array.

• phi_x_out – (ncomponents, npoints) collocation derivative with respect to x.

• phi_y_out – (ncomponents, npoints) collocation derivative with respect to y.

• phi_z_out – (ncomponents, npoints) collocation derivative with respect to z.

void gg_collocation_deriv2(int L, const unsigned long npoints, const double* PRAGMA_RESTRICT xyz, const unsigned long xyz_stride, const int nprim, const double* PRAGMA_RESTRICT coeffs, const double* PRAGMA_RESTRICT exponents, const double* PRAGMA_RESTRICT center, const int order, double* PRAGMA_RESTRICT phi_out, double* PRAGMA_RESTRICT phi_out, double* PRAGMA_RESTRICT phi_x_out, double* PRAGMA_RESTRICT phi_y_out, double* PRAGMA_RESTRICT phi_z_out, double* PRAGMA_RESTRICT phi_xx_out, double* PRAGMA_RESTRICT phi_xy_out, double* PRAGMA_RESTRICT phi_xz_out, double* PRAGMA_RESTRICT phi_yy_out, double* PRAGMA_RESTRICT phi_yz_out, double* PRAGMA_RESTRICT phi_zz_out)
Computes the collocation array and the corresponding first and second cartesian derivatives:

𝜑𝑚𝑝 = 𝑌 𝑚
ℓ

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖|𝜑center−𝑝|2

Parameters

• L – The angular momentum of the basis function.

• npoints – The number of grid points to compute.

• xyz – A (npoints, 3) or (npoints, n) array of the xyz coordinates.

• xyz_stride – The stride of the xyz input array. 1 for xx..., yy..., zz... style
input, 3 for xyz, xyz, xyz, ... style input.

• nprim – The number of primitives (exponents and coefficients) in the basis set

• coeffs – A (nprim,) array of coefficients (𝑐).

• exponents – A (nprim,) array of exponents (𝛼).

• center – A (3,) array of x, y, z coordinate of the basis center.

• order – Enum that specifies the output order.

• phi_out – (ncomponents, npoints) collocation array.

• phi_x_out – (ncomponents, npoints) collocation derivative with respect to x.

• phi_y_out – (ncomponents, npoints) collocation derivative with respect to y.

• phi_z_out – (ncomponents, npoints) collocation derivative with respect to z.

• phi_xx_out – (ncomponents, npoints) collocation derivative with respect to xx.

• phi_xy_out – (ncomponents, npoints) collocation derivative with respect to xy.

• phi_xz_out – (ncomponents, npoints) collocation derivative with respect to xz.

• phi_yy_out – (ncomponents, npoints) collocation derivative with respect to yy.

• phi_yz_out – (ncomponents, npoints) collocation derivative with respect to yz.

• phi_zz_out – (ncomponents, npoints) collocation derivative with respect to zz.

void gg_collocation_deriv3(int L, const unsigned long npoints, const double* PRAGMA_RESTRICT xyz, const unsigned long xyz_stride, const int nprim, const double* PRAGMA_RESTRICT coeffs, const double* PRAGMA_RESTRICT exponents, const double* PRAGMA_RESTRICT center, const int order, double* PRAGMA_RESTRICT phi_out, double* PRAGMA_RESTRICT phi_out, double* PRAGMA_RESTRICT phi_x_out, double* PRAGMA_RESTRICT phi_y_out, double* PRAGMA_RESTRICT phi_z_out, double* PRAGMA_RESTRICT phi_xx_out, double* PRAGMA_RESTRICT phi_xy_out, double* PRAGMA_RESTRICT phi_xz_out, double* PRAGMA_RESTRICT phi_yy_out, double* PRAGMA_RESTRICT phi_yz_out, double* PRAGMA_RESTRICT phi_zz_out, double* PRAGMA_RESTRICT phi_xxx_out, double* PRAGMA_RESTRICT phi_xxy_out, double* PRAGMA_RESTRICT phi_xxz_out, double* PRAGMA_RESTRICT phi_xyy_out, double* PRAGMA_RESTRICT phi_xyz_out, double* PRAGMA_RESTRICT phi_xzz_out, double* PRAGMA_RESTRICT phi_yyy_out, double* PRAGMA_RESTRICT phi_yyz_out, double* PRAGMA_RESTRICT phi_yzz_out, double* PRAGMA_RESTRICT phi_zzz_out)
Computes the collocation array and the corresponding first, second, and third cartesian derivatives:

𝜑𝑚𝑝 = 𝑌 𝑚
ℓ

∑︁
𝑖

𝑐𝑖𝑒
−𝛼𝑖|𝜑center−𝑝|2

12 Chapter 1. Index

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

Parameters

• L – The angular momentum of the basis function.

• npoints – The number of grid points to compute.

• xyz – A (npoints, 3) or (npoints, n) array of the xyz coordinates.

• xyz_stride – The stride of the xyz input array. 1 for xx..., yy..., zz... style
input, 3 for xyz, xyz, xyz, ... style input.

• nprim – The number of primitives (exponents and coefficients) in the basis set

• coeffs – A (nprim,) array of coefficients (𝑐).

• exponents – A (nprim,) array of exponents (𝛼).

• center – A (3,) array of x, y, z coordinate of the basis center.

• order – Enum that specifies the output order.

• phi_out – (ncomponents, npoints) collocation array.

• phi_x_out – (ncomponents, npoints) collocation derivative with respect to x.

• phi_y_out – (ncomponents, npoints) collocation derivative with respect to y.

• phi_z_out – (ncomponents, npoints) collocation derivative with respect to z.

• phi_xx_out – (ncomponents, npoints) collocation derivative with respect to xx.

• phi_xy_out – (ncomponents, npoints) collocation derivative with respect to xy.

• phi_xz_out – (ncomponents, npoints) collocation derivative with respect to xz.

• phi_yy_out – (ncomponents, npoints) collocation derivative with respect to yy.

• phi_yz_out – (ncomponents, npoints) collocation derivative with respect to yz.

• phi_zz_out – (ncomponents, npoints) collocation derivative with respect to zz.

• phi_xxx_out – (ncomponents, npoints) collocation derivative with respect to
xxx.

• phi_xxy_out – (ncomponents, npoints) collocation derivative with respect to
xxy.

• phi_xxz_out – (ncomponents, npoints) collocation derivative with respect to
xxz.

• phi_xyy_out – (ncomponents, npoints) collocation derivative with respect to
xyy.

• phi_xyz_out – (ncomponents, npoints) collocation derivative with respect to
xyz.

• phi_xzz_out – (ncomponents, npoints) collocation derivative with respect to
xzz.

• phi_yyy_out – (ncomponents, npoints) collocation derivative with respect to
yyy.

• phi_yyz_out – (ncomponents, npoints) collocation derivative with respect to
yyz.

• phi_yzz_out – (ncomponents, npoints) collocation derivative with respect to
yzz.

1.6. API Reference 13

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

• phi_zzz_out – (ncomponents, npoints) collocation derivative with respect to
zzz.

1.7 Collocation Example

1.7.1 Single Basis Functions

A collocation grid between a single basis and a Cartesian grid can be computed with the gg_collocation()
function. For example, we will use a grid starting at the origin along the z axis and a S shell at the origin:

#include <stdio.h>
#include "gau2grid.h"

int main() {
// Generate grid
long int npoints = 5;
double xyz[15] = {0, 0, 0, 0, 0, // x components

0, 0, 0, 0, 0}; // y components
0, 1, 2, 3, 4}; // z components

long int xyz_stride = 1; // This is a contiguous format

// Gaussian data
int nprim = 1;
double coef[1] = {1};
double exp[1] = {1};
double center[3] = {0, 0, 0};
int order = GG_CARTESIAN_CCA; // Use cartesian components

double s_output[5] = {0};
gg_collocation(0, // The angular momentum

npoints, xyz, xyz_stride, // Grid data
nprim, coef, exp, center, order, // Gaussian data
s_output); // Output

// Print output to stdout
for (int i = 0; i < npoints; i += 1) {

printf("%lf ", s_output[i]);
}
printf("\n");

}

The resulting output should be:

1.000000 0.367879 0.018316 0.000123 0.000000

For higher angular momentum functions that output size should ncomponents x npoints in size. Where each
component is on a unique row or the X component starts at position 0, the Y component starts at position 5, and the Z
component starts at position 10 as out grid is of length 5. See Gaussian Component Orders for more details or order
output.

The xyz input shape can either be organized contiguously in each dimension like the above or packed in a xyz, xyz,
. . . fashion. If the xyz_stride is not 1, the shape refers to the strides per row. For example, if the data is packed as
xyzw, xyzw, . . . (where w could be a DFT grid weight) the xyz_stride should be 4.

14 Chapter 1. Index

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

long int xyz_stride = 3;
double xyz[15] = {0, 0, 0,

0, 0, 1,
0, 0, 2,
0, 0, 3,
0, 0, 4}; // xyz, xyz, ... format

gg_collocation(0, // The angular momentum
npoints, xyz, xyz_stride, // Grid data
nprim, coef, exp, center, order, // Gaussian data
s_output); // Output

1.7.2 Multiple Basis Functions

Often collocation matrices are computed for multiple basis functions at once. The below is an example of usage:

#include <stdio.h>
#include "gau2grid.h"

int main() {
// Generate grid
long int npoints = 5;
double xyz[15] = {0, 0, 0, 0, 0, // x components

0, 0, 0, 0, 0}; // y components
0, 1, 2, 3, 4}; // z components

long int xyz_stride = 1;

// Gaussian data
int nprim = 1;
double coef[1] = {1};
double exp[1] = {1};
double center[3] = {0, 0, 0};
int order = GG_SPHERICAL_CCA; // Use cartesian components

// Size ncomponents * npoints, (1 + 3 + 5) * 5
double output[45] = {0};
int row = 0;
for (int L = 0; L < 3; L++) {

gg_collocation(L, // The angular momentum
npoints, xyz, xyz_stride // Grid data
nprim, coef, exp, center, order, // Gaussian data
output + (row * npoints)); // Output, shift pointer

row += gg_ncomponents(L, spherical); // Increment rows skipped
}

// Print out by row
for (int i = 0; i < row; i += 1) {

for (int j = 0; j < npoints; j += 1) {
printf("%lf ", output[i * npoints + j]);

}
printf("\n");

}
}

1.7. Collocation Example 15

gau2grid Documentation, Release v2.0.6+4.gcd0e8d0.dirty

The resulting output should be:

1.000000 0.367879 0.018316 0.000123 0.000000 // S
0.000000 0.367879 0.036631 0.000370 0.000000 // P_0
0.000000 0.000000 0.000000 0.000000 0.000000 // P^+_0
0.000000 0.000000 0.000000 0.000000 0.000000 // P^-_0
0.000000 0.367879 0.073263 0.001111 0.000002 // D_0
0.000000 0.000000 0.000000 0.000000 0.000000 // D^+_1
0.000000 0.000000 0.000000 0.000000 0.000000 // D^-_1
0.000000 0.000000 0.000000 0.000000 0.000000 // D^+_2
0.000000 0.000000 0.000000 0.000000 0.000000 // D^-_2

16 Chapter 1. Index

INDEX

C
collocation() (in module gau2grid), 6
collocation_basis() (in module gau2grid), 6

G
gg_max_L (C function), 9
gg_ncomponents (C function), 9

O
orbital() (in module gau2grid), 7
orbital_basis() (in module gau2grid), 7

17

	Index
	Index

